API Documentation
Caption Search
Search your image dataset using natural language captions—powered by semantic understanding.
How This Helps
Caption Search enables you to retrieve relevant media using natural phrases like “beach sunset” or “red car”—not just exact keyword matches.
Overview
The GET /api/v1/explore/{dataset_id}
endpoint enables semantic caption search using the image_caption
parameter.
This type of search returns results based on intent and meaning, not just exact text.
Example
A query for "beach sunset"
may return:
- “A man at the beach on sunset”
- “Golden sun setting over the ocean waves”
Searching for:
red car
— matches loosely related red items and cars"red car"
— matches images of an actual red car
Each result includes a relevance score that quantifies the quality of the match (0.0–1.0).
Authentication
All API calls require a bearer token:
Textual Caption Search
Endpoint
Required Parameters
Name | Type | Description |
---|---|---|
image_caption | string | The search query (e.g. "beach sunset" ) |
threshold | integer | Clustering threshold (0–4) |
entity_type | string | Must be IMAGES or OBJECTS |
textual_similarity_threshold | float | Score cutoff (0.0–1.0) for relevance |
Example (cURL)
Response Example
Response Breakdown
clusters
: Visual similarity groupsmedia
: Individual resultscaption
: Caption matchrelevance_score
: Quality of the matchpreview
: Thumbnail preview
Filter and Refine
Add Similarity Threshold
Filter by Tags and Labels
Python Client
Example Usage
Advanced Techniques
Phrase Match
Semantic Exclusions
Best Practices
- Use specific queries
- Set a minimum similarity threshold
- Use tags and labels to focus results
- Sort using
relevance_score
- Remember: visual clusters ≠ semantic clusters
Pagination Helper
Error Handling
Limitations
- Max 100 results per page
- Minimum threshold: 0.5
- Quality depends on caption accuracy
- Complex phrasing may yield fuzzy results