How This Helps

Export datasets for use in training pipelines, labeling platforms, analytics workflows, or external review. You can export everything or just what you need.


Export a Dataset

1

Open the Dataset

Go to the Dataset Exploration page.

2

Click 'Export'

Click the Export button in the top-right corner.

3

Name the Export

Provide a descriptive name for your export file.

4

Choose Export Scope

Select the scope—entire dataset, filtered view, or specific selections.

5

Pick a Format

Choose from supported formats:

  • JSON– available now
  • COCO– coming soon
6

Include Images (Optional)

Toggle Include image files to include up to 5,000 images in your export.

7

Export

Click Export File to download.


Export Options

Entire Dataset

Exports all items in the dataset, regardless of filters or selections.

Matching Filters

Exports only the items that match your currently applied filters, such as issue types, tags, or labels.

Current Selection

Exports only manually selected items—images, objects, or clusters.


JSON Export Format

Exported data is structured into a .json file with two sections:

1. info

General metadata about the dataset and export:

"info": {
  "dataset": "Name",
  "dataset_creation_time": "2025-04-02T12:15:02.510168",
  "dataset_url": "http://app.visual-layer.com/dataset/.../data",
  "description": "Exported from Visual Layer",
  "export_time": "2025-04-02T14:31:30.931324",
  "exported_by": "User_Name",
  "schema_version": "1.1",
  "total_media_items": 10000000
} 

2. media_items

An array of media items (images or video frames), each with all available metadata:

{
  "media_id": "<uuid>",
  "media_type": "image",  // or "video_frame"
  "file_name": "example.jpg",
  "file_path": "example.jpg",
  "file_size": "48.96KB",
  "height": 360,
  "width": 360,
  "url": "http://...",
  "cluster_id": "<uuid>",
  "uniqueness_score": 0.85,
  "metadata_items": [ ... ]
}

Metadata Items

Each media item includes a list of metadata_items. Below are the possible types:

1. type: "issue"

Used to represent a detected problem:

{
  "type": "issue",
  "properties": {
    "issue_type": "duplicates",
    "confidence": 0.85,
    "duplicate_group_id": "<uuid>",
    "duplicate_threshold": 0.88
  }
}

2. type: "user_tag"

Tags applied by a user to a media item:

{
  "type": "user_tag",
  "properties": {
    "tag_name": "spider",
    "assigned_date": "2025-04-02T12:34:00.189534"
  }
}

3. type: "video_info"

Provides context on a video frame:

{
  "type": "video_info",
  "properties": {
    "frame_number": 17,
    "video_id": "<uuid>",
    "timestamp": "00:00:00.567"
  }
}

4. type: "object_label"

Describes an annotated object (bounding box), including nested issues:

{
  "type": "object_label",
  "properties": {
    "bbox": [x, y, width, height],
    "category_name": "Joey",
    "source": "User",
    "original_id": -1,
    "uniqueness_score": 0.85,
    "url": "http://...",
    "metadata_items": [
      {
        "type": "issue",
        "properties": {
          "issue_type": "blur",
          "confidence": 0.81
        }
      }
    ]
  }
}

5. type: "image_label"

A classification label applied to the entire image:

{
  "type": "image_label",
  "properties": {
    "category_name": "car",
    "source": "Model",
    "original_id": 1234
  }
}

6. type: "caption"

{
  "type": "caption",
  "properties": {
    "text": "A dog playing in the field",
    "source": "AI model"
  }
}
  • Duplicates often include duplicate_group_id and threshold values.
  • Object-level issues are nested inside object_label blocks.