This guide provides instructions on structuring annotation files correctly before importing them into Visual Layer. Visual Layer supports two annotation formats : COCO (JSON format) and CSV format. Ensuring proper structuring will prevent errors during dataset creation and allow seamless integration.
To convert YOLO annotation to VL format visit: Converting YOLO Annotations to Visual Layer Format
For full-image class labels, create an annotation file named image_annotations.csv
orimage_annotations.parquet
. Each row in the file represents an image and its corresponding label.
filename | label |
---|---|
IDX_DF_SIG21341_PlasmasNeg.png | IDX_DF |
IDX_DF_ALM00324_PlasmasPos.png | IDX_DF |
folder/IDX_RC_ALM04559_PlasmasNeg.png | IDX_RC |
filename
column must contain relative paths.label
column assigns a class to entire image.['t-shirt', 'SKU12345']
.caption
column for textual metadata.filename | label |
---|---|
cool-tshirt.png | [“t-shirt”, “SKU12345”] |
cool-pants.jpg | [“pants”, “SKU231312”] |
For object-level annotations, create an annotation file named object_annotations.csv
or object_annotations.parquet
. Each row represents a detected object, including its bounding box coordinates and class label.
filename | col_x | row_y | width | height | label |
---|---|---|---|---|---|
Kitti/raw/training/image_2/006149.png | 0 | 240 | 135 | 133 | Car |
Kitti/raw/training/image_2/006149.png | 608 | 169 | 59 | 43 | Car |
col_x
and row_y
define the top-left corner of the bounding box.width
and height
must be greater than zero.Ensure The file is named annotations.json
.
bbox
) follow the format [col_x, row_y, width, height]
.
col_x
and row_y
define the top-left corner of the bounding box.width
and height
must be greater than zero.Format | Representation | File Type |
---|---|---|
JSON (COCO) | [x_min, y_min, width, height] | .json |
CSV(Image Labels) | [filename, label] | .csv |
CSV(Object Labels) | filename, col_x, row_y, width, height, label | .csv |
For instructions on importing annotation files, see Importing Annotations.
By following these guidelines, you can ensure that your annotation files are structured correctly and ready for seamless dataset creation in Visual Layer.
This guide provides instructions on structuring annotation files correctly before importing them into Visual Layer. Visual Layer supports two annotation formats : COCO (JSON format) and CSV format. Ensuring proper structuring will prevent errors during dataset creation and allow seamless integration.
To convert YOLO annotation to VL format visit: Converting YOLO Annotations to Visual Layer Format
For full-image class labels, create an annotation file named image_annotations.csv
orimage_annotations.parquet
. Each row in the file represents an image and its corresponding label.
filename | label |
---|---|
IDX_DF_SIG21341_PlasmasNeg.png | IDX_DF |
IDX_DF_ALM00324_PlasmasPos.png | IDX_DF |
folder/IDX_RC_ALM04559_PlasmasNeg.png | IDX_RC |
filename
column must contain relative paths.label
column assigns a class to entire image.['t-shirt', 'SKU12345']
.caption
column for textual metadata.filename | label |
---|---|
cool-tshirt.png | [“t-shirt”, “SKU12345”] |
cool-pants.jpg | [“pants”, “SKU231312”] |
For object-level annotations, create an annotation file named object_annotations.csv
or object_annotations.parquet
. Each row represents a detected object, including its bounding box coordinates and class label.
filename | col_x | row_y | width | height | label |
---|---|---|---|---|---|
Kitti/raw/training/image_2/006149.png | 0 | 240 | 135 | 133 | Car |
Kitti/raw/training/image_2/006149.png | 608 | 169 | 59 | 43 | Car |
col_x
and row_y
define the top-left corner of the bounding box.width
and height
must be greater than zero.Ensure The file is named annotations.json
.
bbox
) follow the format [col_x, row_y, width, height]
.
col_x
and row_y
define the top-left corner of the bounding box.width
and height
must be greater than zero.Format | Representation | File Type |
---|---|---|
JSON (COCO) | [x_min, y_min, width, height] | .json |
CSV(Image Labels) | [filename, label] | .csv |
CSV(Object Labels) | filename, col_x, row_y, width, height, label | .csv |
For instructions on importing annotation files, see Importing Annotations.
By following these guidelines, you can ensure that your annotation files are structured correctly and ready for seamless dataset creation in Visual Layer.